ISSN 1998-0663 (print), English version: ISSN 2587-814X (print), |
Ехлаков Ю. П.1, Грибков Е. И.2Модель извлечения пользовательских мнений о потребительских свойствах товара на основе рекуррентной нейронной сети
2018.
№ 4 (46).
С. 7–16
[содержание номера]
В статье на основе анализа существующих подходов к задаче разметки последовательности предложена модель структурного предсказания с использованием рекуррентной нейронной сети долгой краткосрочной памяти (long short-term memory, LSTM), позволяющая извлекать мнения пользователей из текстов отзывов. Представлены конфигурация модели и набор правил изменения ее состояния, позволяющие использовать как признаки из обрабатываемого предложения, так и прошлые результаты собственных предсказаний. Для обучения и оценки качества работы модели создан размеченный набор текстов отзывов о мобильных телефонах из интернет-магазина Amazon. Описана процедура обучения модели извлечения мнений на наборе отзывов, предложены конкретные значения гиперпараметров модели. Проведено экспериментальное сравнение разработанной модели с моделью на основе условного случайного поля (conditional random field, CRF) с использованием LSTM. Для сравнения моделей использовался критерий F1, характеризующий соотношение полноты и точности извлечения мнений. Результаты экспериментального исследования модели показывают, что предложенная модель дает более высокие по сравнению с аналогом результаты: в случае строго совпадения F1 для аспектов выше на 4,51%, для оценочных высказываний – на 5,44%.
Библиографическое описание:
Ехлаков Ю.П., Грибков Е.И. Модель извлечения пользовательских мнений о потребительских свойствах товара на основе рекуррентной нейронной сети // Бизнес-информатика. 2018. № 4 (46). С. 7–16. DOI: 10.17323/1998-0663.2018.4.7.16
|
|